Hybrid system models and control: putting together the pieces of the energy jigsaw

Primary supervisor

Additional information

Contact admissions office

Other projects with the same supervisor

Funding

  • Competition Funded Project (European/UK Students Only)
This research project is one of a number of projects at this institution. It is in competition for funding with one or more of these projects. Usually the project which receives the best applicant will be awarded the funding. The funding is available to citizens of a number of European countries (including the UK). In most cases this will include all EU nationals. However full funding may not be available to all applicants and you should read the full department and project details for further information.

Project description

The planned expansion of the different national energy-related systems (generation, transportation, distribution, transformation) and the production of electricity from renewable sources entail significant challenges due to the unique characteristics of the sector worldwide. The dynamics of energy networks (including renewable generation sources) are highly nonlinear, combine continuous and discrete, smooth and abrupt dynamics, and are subject to discontinuous operation and a wide range of external impacts. Under this scenario, there is a need to analyse the structural vulnerability of the energy network and recommend ways to maintain its robustness despite contingencies (for example, changes in the supply, imbalances between generation and load, random equipment failures, and targeted attacks or damage to the infrastructure).

The aim of this research is to model and analyse different scenarios in complex energy grids, with the ultimate goal of identifying behaviour patterns that degrade the performance of the entire network. The theoretical framework to use is that of hybrid systems, which brings together dynamical analysis tools, control engineering methods and computational models (mainly, hybrid automata). Since one of the purposes is to automate as much as possible the decision-making and monitoring processes, advanced monitoring systems can be derived from formal verification techniques, and used in order to test the performance of the network, and, if necessary to modify its behaviour or topology to meet desired specifications. Contributions of this project are envisaged as mainly theoretical, and key scenarios will be simulated. This work will be a stepping stone for future research in large-scale distribution networks. This research would be part of the project DYVERSE (DYnamical-driven VERification of Systems with Energy considerations).

Person specification

For information

Essential

Applicants will be required to evidence the following skills and qualifications.

  • This project requires mathematical engagement and ability substantially greater than for a typical Computer Science PhD. Give evidence for appropriate competence, as relevant to the project description.
  • You must be capable of performing at a very high level.
  • You must have a self-driven interest in uncovering and solving unknown problems and be able to work hard and creatively without constant supervision.

Desirable

Applicants will be required to evidence the following skills and qualifications.

  • You will possess determination (which is often more important than qualifications) although you'll need a good amount of both.
  • You will have good time management.

General

Applicants will be required to address the following.

  • Discuss your final year Undergraduate project work - and if appropriate your MSc project work.
  • How well does your previous study prepare you for undertaking Postgraduate Research?
  • Comment on your transcript/predicted degree marks, outlining both strong and weak points.
  • Why do you believe you are suitable for doing Postgraduate Research?
▲ Up to the top